
OSMA
Software
Program
Domain Analysis Guidebook

December 1998

ii

Foreword

This document is a product of the National Aeronautics and Space Administration (NASA) Office
of Safety and Mission Assurance (OSMA) Software Program, an agency-wide program designed
to address and mitigate software-related risk within NASA programs. The goals and strategies of
this program are traceable to the NASA Strategic Plan, the NASA Software Strategic Plan, and
the OSMA Strategic Plan.

This guidebook presents a method of performing experience domain analysis. The purpose of the
guidebook is to facilitate the reader in characterizing two given development environments,
applying domain analysis to model each, and then applying an evaluation process, based upon the
Goal/Metric/Paradigm, to transfer a given development technology from one of the environments
to the other. This guidebook describes this process and gives an example of its use within NASA.

The present document is one element of the set of standards, guidebooks, and reports produced in
support of the OSMA Software Program. The principal report authors were

Victor R. Basili (University of Maryland Computer Science Department)

Carolyn Seaman (University of Maryland Computer Science Department)

Roseanne Tesoriero (University of Maryland Computer Science Department)

Marvin V. Zelkowitz (University of Maryland Computer Science Department)

Carolyn Seaman is now with the University of Maryland, Baltimore County. The process
described in this document is also based upon the work of Rose Pajerski (Fraunhofer Center –
Maryland). Preliminary efforts on understanding experience application domains were performed
by Frank McGarry (Computer Sciences Corporation) and Lionel Briand (Fraunhofer Institute for
Experimental Software Engineering). We appreciate the help of David Petri (NASA/JSC) for
allowing us to develop this model with the help of his Rapid Development Laboratory. We greatly
acknowledge the comments from Sira Vegas and Maurizio Morisio, who read an earlier draft of
this report. This activity was partially sponsored by NASA grant NCC5170 to the University of
Maryland.

iii

Contents

Foreword ... iii

Chapter 1. Introduction .. 1

Chapter 2. Characterizing a Domain ... 4
2.1 Transferable Artifacts .. 4
2.2 Experience Domain Analysis Factors ... 6

Chapter 3. Modeling a Domain... 8
3.1 Header ... 8
3.2 Intuitive Domain Model... 8
3.3 Operationalization .. 8
3.4 Operational Domain Model .. 9
3.5 The Goal/Question/Metric Paradigm .. 9

Chapter 4. Evaluating a Domain ... 12
4.1 Identifying Domain Characteristics ... 12
4.2 Evaluating the Domain Model ... 14

4.2.1 Identify the New Technology ... 15
4.2.2 Collecting Domain Factors... 15
4.2.3 Determining Domain Values in the Target Environment ... 17
4.2.4 Analysis of the Two Domain Models.. 17

Chapter 5. Conclusion.. 20

Appendix A. GQM Domain Model... 21

Abbreviations and Acronyms... 29

References .. 30

1

Chapter 1. Introduction

Domain analysis is the process of identifying and organizing knowledge about a class of problems.
The goal is to recognize standard concepts, functions, and architectural characteristics within a
software development application area. Domain analysis has taken on greater importance recently
as a means to facilitate product reuse and improve both the productivity and quality of the final
products by allowing knowledge from other domains to be applied easily and reliably to a new
domain.

Often domain analysis refers to specific software applications, such as payroll systems, fluid
dynamics, weather predictions, or in the case of NASA software, to applications such as onboard
computation, flight dynamics, and ground support. In this report we take a broader view of a
domain. We also consider the environment which develops the software: the people, the
computers, the automated tools, and the processes that are used. This provides a context for
domain analysis in order to enable not only product reuse (i.e., source code), but also for reuse of
other software-related artifacts, including process models (e.g., best practices), cost estimation
models, defect baselines, and software techniques and methods. In other words, a “domain” may
be more than an application domain. We use the term “experience domain analysis” to refer to the
gaining of a domain understanding in order to reuse experience of any kind.

Therefore, in addition to product reuse issues, we view experience domain analysis as a means of
identifying areas and groups of systems for the reuse and sharing of experiences where:

• similar development or maintenance standards and processes may be applied (e.g.,
identify systems for which DOD-STD-2167 is applicable within NASA/GSFC’s
Information Systems Center (ISC))

• quality and productivity data and models are comparable (e.g., identify systems for
which the error rates are comparable within all the branches of NASA/GSFC’s ISC)

• similar development environments may be used (e.g., identify systems where C++
would be an effective development environment and identify systems where Ada
would be an effective development environment)

The goal of this document is to provide some practical guidance related to domain analysis in
order to define a context for the reuse of software experiences. Once domains have been
identified, common processes, standards and databases of experience may be shared with
confidence by various software organizations within a broader organizational structure. Also,
when similarities are numerous in terms of standards and models, these software development and
maintenance organizations can share a common body of experience. Hence, software domains
may be defined, not solely a priori on the basis of some organizational partitioning, but according
to the factors that characterize the specific development processes, technologies, products,

2

constraints, goals, and risks associated with the projects. Thus, because organizations can share
data, lessons learned, and best practice information, they can improve faster and further than they
could in isolation.

 If domains can be identified, then there is a possibility for experience sharing and mutual
collaboration for refining processes and evaluating new technologies. However, an organization is
needed in order to identify these domains, and to collect and package empirical experience for
each of the domains. It is also needed to embed the experience domain analysis process without
having to relearn this activity each time it is required.

 This organization is referred to as the Experience Factory [Basili1994]. For practical reasons, two
kinds of Experience Factories are actually needed. The first one, referred to as the Local
Experience Factory, is specific to a development environment and is responsible for the local data
collection and packaging. It also provides support and consulting to the development
organization. The second one, referred to as the Consolidated Experience Factory, is responsible
for identifying commonalties across organizations and packaging them into common models. It
also helps insure consistent data collection across organizations when possible, and is supported,
fed, and used by multiple organizations. The Consolidated Experience Factory is shown in Figure
1-1.

It is toward the development of such a Consolidated Experience Factory that this experience
domain analysis guidebook is oriented. By formalizing the steps necessary to understand a
domain, the transference of that domain experience to another domain is made that much simpler.

In order to implement experience domain analysis, three processes must be undertaken:

• We must characterize the original and the new environment in order to determine what
we can and want to reuse. What technologies are amenable for reuse, and what factors in
these environments will affect the feasibility of reuse?

• We must model the existing environments so that we are able to understand the
constraints on our analysis.

• We must evaluate the model with respect to the technology we wish to reuse.

3

D 1

Orga niz ation A Orga niz ation B Orga niz ation C

D 2 D 1 D 2 D 1 D 2

Loc al Exp erienc e Fa ctory

C onsoli d ate d E x perienc e F a ctory

D omain D 1
Pa c k a ging

D omain D 2
Pa c k a ging

Loc al Exp erienc e Fa ctory Loc al Exp erienc e Fa ctory

 Figure 1-1. Consolidated Experience Factory

Chapters 2 through 4 of this document present the activities of the experience domain analysis
process. Chapter 5 presents a method for extending this process for long-term environment
improvement with experience domain analysis as one component of the method.

4

Chapter 2. Characterizing a Domain

We can summarize the basic concepts of domain analysis with the following definitions:

Definition 1: Domain Analysis

Domain analysis is the process of identifying and organizing knowledge about a
class of problems.

Definition 2: Experience Domain Analysis

Experience domain analysis is the process of identifying and organizing knowledge
about a set of software artifacts within or across organizations.

 The goal of experience domain analysis is to assess the feasibility of reusing or sharing a set of
software artifacts within or across organizations. For example, can we effectively use a cost
model developed in a new environment that is based on a different set of past projects than those
of our current development? Will the cost model make the same predictions about the future in
the new environment that it made in the older environment?

Definition 3: Domains

With respect to a particular domain analysis goal, domains are "types" of software
development artifacts (e.g., software development organizations, projects,
software components) for which certain common experiences may be reused or
shared.

Definition 4: Domain Characteristics (Factors)

Domain characteristics represent those factors that determine whether or not one
or more experiences can be reused or shared within or across organizations.

For example, in a given organization, large Ada flight simulators may represent a domain with
respect to cost modeling and prediction. In this case, the project characteristics involved in the
domain characterization function are the project size (large), the programming language (Ada),
and the application domain (flight simulation).

The following sections describe how domains can be characterized by these definitions.

2.1 Transferable Artifacts

The first step in experience domain analysis is to determine the kinds of experience one wants to
reuse or share. We characterize experience as an artifact usable by the developers of a software

5

product. As an example, we present below a generic taxonomy of software artifacts that can
conceivably be reused or shared within or across organizations. The experiences presented by the
artifacts in the following taxonomy and in the rest of the paper are project level experiences, since
we think the project level is the appropriate level of application for experience domain analysis.
However, we could similarly address the issues related to other kinds of experiences associated
with other levels of artifacts (e.g., development organizations such as branches, directorates, or
NASA centers).

It is important to note that the taxonomy presented here encompasses more than just software
products. Also, one could further refine the taxonomy within each specific organization.

Taxonomy of Experience Domain Analysis Technologies

Artifacts, which are reusable from one project to another, are indicated by the
following taxonomy. Note that we consider much more than simply source code or
design documents as the experiences that may be shared. All packageable
information is a candidate artifact for experience domain analysis.

• Data and Models
§ Descriptive models
§ Predictive models

♦ Cost models
♦ Schedule models
♦ Reliability growth models
♦ Error models
♦ Change models
♦ Performance models

§ Quality evaluation models
§ Lessons learned

• Standards and Processes
§ Requirements
§ Specifications
§ Design
§ Coding
§ Testing, Inspections, Evaluations
§ Change management
§ Process improvement (e.g., GQM)
§ Configuration management
§ Quality assurance

• Products
§ Requirements, Specifications
§ Architecture

6

§ Design
§ Code
§ Test plans and data

One must determine the goals desired of reuse in order to identify the factors that will be relevant
to the reusability of the predefined software artifact or experience. The following list of questions
attempts to identify some the most important goals for motivating experience domain analysis.
This list is not intended to be complete, but rather a sample of the important questions that are not
product-related and that can be addressed by an experience domain analysis procedure.

1. Should a common standard, process, or best practice be used across the entire
organization? Are there domains of projects that require different technical solutions
and, as a consequence, different standards (i.e., does flight or embedded software
require a different design process than ground support systems because of real-time
and memory constraints)?

2. When can one reuse a particular standard, process, or best practice that has been used
successfully in another organization (i.e., can the Cleanroom development process as
originally designed at IBM be used by a NASA organization)?

3. When can one compare the particular quality metric values for a set of projects (e.g.,
productivity, error density, reliability, reuse level) across an organization? What are
the project domains across which this particular quality aspect is not comparable?

4. When can one trust lessons learned from another organization (e.g., information about
the usefulness of a development tool)?

5. When can one reuse data and models (e.g., a cost model) from another organization?

Certain kinds of experiences are a priori more likely to be reusable or sharable than others
because they naturally have a broader realm of application. For example, many high-level
concepts are universally applicable, such as the tracking of project progress across the
development life cycle through data collection to monitor or control schedules and resource
consumption. Other kinds of experiences may have a somewhat more restricted realm of
application. For example, a waterfall process model is only applicable as long as the application
domain is well known and the solution space is reasonably well understood. Furthermore, some
kinds of experiences have a very narrow realm of application, such as experiences related to
application-specific programming languages and operating systems (e.g., a real-time UNIX
variant for real-time applications).

2.2 Experience Domain Analysis Factors

Based upon the artifacts identified by the previous section, different project and environmental
factors need to be considered to help identify the appropriate domain of projects. These factors

7

provide the goals for transferring the artifact. For each factor deemed relevant in our domain, we
need to identify the quantitative values that the factor has in both the old and new environment.
This will allow us to decide if the artifact can be safely reused in the new environment.

Taxonomy of Domain Characteristics (Factors)

The following is a taxonomy of factors (potential domain characteristics) to be
considered.

• Product
§ Functionality
§ Requirement stability
§ Concurrent software
§ Memory constraints
§ User interface complexity
§ Safety and reliability requirements
§ Lifetime requirements
§ Size
§ Programming language
§ Intermediate product quality
§ Product reliability

• Process
§ Process model (e.g., waterfall, spiral)
§ Process conformance
§ Environment constraints (e.g., schedule, budget, funding)
§ Productivity

• Personnel
§ Application domain experience or training
§ Platform experience
§ Process experience
§ Education
§ Motivation
§ Development team organization
§ Turnover
§ Willingness to change

• Environment
§ Application domain
§ Development domain
§ Manager’s role
§ External contract support

8

Chapter 3. Modeling a Domain

Given the set of technologies and factors that can be used to characterize a given domain, the next
step in experience domain analysis is to model the domain. To formalize the domain information,
a domain modeling scheme developed by Andreas Birk at the Fraunhofer Institute for Empirical
Software Engineering in Kaiserslautern, Germany is described. The reader is referred to
[Birk1997] for a detailed explanation of the modeling strategy.

It is important to realize that the domain model depends upon the viewpoint from which it has
been derived [Birk1997]. Developing a model that characterizes project management issues will
be different from one that characterizes software development issues.

The domain model consists of four parts: header, intuitive domain model, operationalization, and
operational domain model. Appendix A gives a detailed example of this domain model.

3.1 Header

The header relates the domain model to its technology and environment and simply contains
identifying information. It contains five components: technology, task, goal, viewpoint, and
environment. The task and goal are particularly important, as these must match the task and goal
of the project that wants to import the technology. This should be obvious, but is sometimes
overlooked.

3.2 Intuitive Domain Model

The Intuitive Domain Model, the second part of the model, describes the domain factors that have
been identified at a conceptual level. The domain factors are also assigned a set of possible values;
the model is actually a faceted classification scheme. Each facet is a domain factor listed in section
2.2. For example, for “programming language,” we would indicate what language is being used.
For quantitative factors, such as the personnel factor “platform experience,” we could use
numerical values such as years of experience, or ordinal values such as “many,” “some,” or “few”.
The domain factor and its value is called a domain characteristic.

3.3 Operationalization

The third section of the model, the Operationalization, defines the domain factors more formally.
Three kinds of mappings can be used for these definitions:

1. Direct operationalization, which can be used for explicit intuitive domain models. For
example, for “programming language,” we could use the explicit language name (e.g.,
Ada, C++)

9

2. Functional operationalization, which can be used for intuitive domain factors that can
be broken down into more elementary domain factors. The domain factors in
Appendix A are generally defined as simple algorithms from more primitive factors.
For example, for the factor “Attitudes toward measurement” described in Appendix A,
the functional operationalization is given as

if goals is no then
attitudes toward measurement is low

else

managers →
senior managers ↓

high medium low

high high medium medium
medium high medium low

low medium medium low

Based upon the attitudes of both managers and senior managers, then the attitudes
toward measurement can be specified.

3. Vague operationalization, which can be used for domain factors that can be traced to
more elementary factors, but cannot be specified precisely. The factor “Experience of
developers” is one such factor that cannot be given explicitly. We could refer to
“Experience of developers” as a direct operationalization by specifying the number of
years of experience, but research has consistently shown that the number of years of
experience is a poor predictor of capabilities. In such a case it is best to leave this sort
of factor as a vague operationalization rather than a direct operationalization.

3.4 Operational Domain Model

Finally, the Operational Domain Model defines the measurement procedures and instruments to be
used to apply the measures, which are in turn used to determine the values of the domain factors.
These procedures and instruments are to be applied to an environment wishing to use the
technology. In our domain model, the procedure used to collect all the data from the new
environment can be an interview, with the instruments being the interview questions. Survey
forms or data collected from previous projects are other aspects of the operational domain model.

3.5 The Goal/Question/Metric Paradigm

This section identifies how one might analyze the relationship between domain characteristics and
reuse goals based upon experience. We have argued that domain characteristics strongly depend
on the particular goal to be achieved by the experience domain analysis. Ideally, in a mature
engineering discipline, the importance of all possible domain characteristics within the context of

10

each relevant goal should be established. With respect to the discipline of software engineering,
this is still difficult, or in some cases even impossible, to achieve.

Without objective data, the reader must decide, based on personal experience, which
characteristics (within the taxonomy presented previously) affect the particular goals for the
organization. A process, the Goal/Question/Metric (GQM) Paradigm, has been developed as a
means to help in this activity. Based upon a specific goal, a set of questions can be posed that help
address understanding the particular goal. From these questions, a series of metrics can be defined
so that appropriate measurements can be made from the development process in order to be able
to address the underlying goal. From this analysis, we can address the specific questions needed to
build the domain model described in the previous sections of this chapter. The application of this
process is given in Chapter 4.

Software development is an engineering discipline, and measurement is an ideal mechanism for
feedback and evaluation. However, for an organization to measure in a purposeful way requires
that it (1) specify the goals for itself and its projects, (2) trace those goals to the data that are
intended to define these goals operationally, and (3) provide a framework for interpreting the data
to attain the goals. The Goal/Question/Metric paradigm is a mechanism for defining and
evaluating a set of operational goals, using measurement. It represents a systematic approach for
tailoring and integrating goals with models of the software processes, products and quality
perspectives of interest, based upon the specific needs of the project and the organization. The
GQM paradigm is pictured in Figure 3-1.

The goals are defined in an operational and tractable way by refining them into a set of
quantifiable questions that are used to extract the appropriate information from the models. The
questions and models define the metrics that, in turn, specify the data that needs to be collected.
The models provide a framework for interpretation. As shown in the figure, the flow from the
goals to the metrics in the GQM paradigm can be viewed as a directed graph, with the flow from
the goal nodes to the question nodes to the metric nodes. Eight goals are shown, and each goal
generates a set of quantifiable questions that attempt to define and quantify the specific goal that
represents an entry node in the directed graph. These questions are based upon a particular set of
process, product, and quality models that are not explicitly represented in the graph. Although
there may be many goals and even many questions, the metrics do not grow at the same rate as
the goals and questions. Thus a single set of metrics can be collected that allows us to answer
many goal-based process and product questions.

Business
Goal

Question

Improvement
 Goal

Business
Goal

Business
Goal

Business
Goal

Business
Goal

Improvement
 Goal

Improvement
 Goal

Question Question Question Question

11

Figure 3-1. Goal/Question/Metric Paradigm

Applying GQM involves five steps:

1. developing a set of corporate, division and project goals for productivity and quality
(e.g., customer satisfaction, on-time delivery, improved quality)

2. generating questions (based upon models) that define those goals as completely as
possible in a quantifiable way

3. specifying the measures needed to be collected to answer those questions and to track
process and product conformance to the goals

4. developing mechanisms for data collection

5. collecting, validating and analyzing the data in both real time (e.g., to provide
feedback to projects for corrective action) and in a post-mortem fashion (e.g., to
assess conformance to the goals and make recommendations for future improvements)

12

Chapter 4. Evaluating a Domain

We now describe an analysis procedure aimed at performing experience domain analysis. This
procedure is not an exhaustive presentation of all the techniques that could be involved in
identifying domains. However, a framework is given which should help the reader identify the
steps, their goals, and the kinds of techniques that can be used to perform them.

4.1 Identifying Domain Characteristics

There are four steps in identifying domain characteristics.

Step 1 Identify the experience to be used (goal analysis)

What experiences do you want to use and why? The specific goals of the experience domain
analysis to be performed have to be defined (e.g., define a testing and inspection standard process
across a NASA engineering center). Surveys of current practices in a given organization might
help identify issues and relevant reuse or sharing opportunities in order to define goals for
experience domain analysis.

Step 2 Identify the relevant factors and generate metrics (domain characteristics' analysis)

Step 2.1 Determine relevant factors

What factors affect the use of this experience? A set of factors likely to characterize
domains within the context of each experience domain analysis goal must be defined.
GQM can be used at this stage. Once the goals have been stated, identify the factors which
may characterize different domains, and thereby require different solutions with respect to
the goals. For example, the level of system criticality will have an impact on testing and
inspection standards, while a high requirement instability might require specific inspection
and consistency analysis procedures. As a consequence, these important variations in the
development process are also likely to create the need for different cost models for
systems with high requirement instability and high level of criticality. These two factors
are examples of domain characteristics.

Step 2.2 Assess availability of factors

What measures, direct or indirect, are available for the given factors? Determine which
factors are available for helping with the selection of adequate standards, processes and
models once they have been defined or built. Let us assume that requirement stability is a
crucial factor that determines the various domains where requirement and specification
strategies should differ. However, requirement stability happens to be unknown and not
easily predictable when starting the requirement and specification process. As a

13

consequence, it becomes difficult to know which standard process to apply beforehand.

Step 2.3 Determine operationalization of factors

What appropriate measurement scale must be used for a given factor? When their level of
measurement is either ordinal or nominal, one has to define the value domain of the
identified domain characteristics. For example, an ordinal scale may be defined for levels
of criticality according to the expected loss if a failure occurs during system operation.
This scale is by definition subjective and could be defined along the following scale: minor
financial loss, major financial loss, human life at risk, likely loss of human life. Categories
should always imply significant differences in the reusability or applicability of the
experience of interest; that is, all four categories of the factor level of criticality match
different sets of solutions with respect to testing and inspection processes.

Step 2.4 Obtain values for those factors in both domains

What values for each identified factor can be determined? Interviews and feedback can be
used to reach a consensus from all involved. In some cases, questionnaires may be
distributed to project managers and the collected subjective information about past and
current projects may be used as a rough substitute to actual project data.

When adequate data are available, the following steps can be performed in a straightforward
manner.

Step 3 Identify the relevant project set and associated data for the particular goal (sample
analysis)

Which projects can validly be used to perform the experience domain analysis? One should be
careful not to systematically use all the data available within the organization's historical database.
For example, some projects may be experiments aiming at evaluating new technologies, while
others may be classified as pure maintenance tasks. These projects might not be relevant to the
models/analyses to be built/performed and, in this case, they should be removed from the data set.
Also, the data collection may be of varying quality from one project to another. The projects
showing evidence of poor data collection can be discarded.

Do the factors in the "relevant project set" display sufficient variation to be of any use? Based on
the value domains defined for each factor, the analyst must determine whether or not there is
variability within the studied organization(s). For example, if requirement definitions appear
somewhat stable over all the projects, then it becomes an irrelevant factor for experience domain
analysis even though it may be a theoretically relevant factor. This step may involve the use of
statistical analysis techniques such as analysis of variance, non-parametric rank-based tests, and
tests for proportion.

Step 4 For two different environments, compare the domain characteristics

14

This step identifies similarities with respect to the factors of interest across the organization's
projects. Similar projects are clustered in domains. Differences between domains must be
significant enough to justify their differentiation with respect to the stated goal. On the other
hand, consistency within domains must be high enough to allow the reuse or sharing of experience
between the domain's projects. The level of confidence associated with the decisions that will be
made based on domain comparisons will get higher as the domain definitions become more
precise and the domain projects become more homogeneous. This step can be performed based on
intuition (e.g., Delphi method) but is usually more accurate when based on data collected at the
project level.

Compare the values of the domain factors for the new environment to those for the original
environment and identify the domain factors with different values in the two environments. For
each domain factor that represents a difference between the new environment and the old,
determine whether the technology can be modified in the new environment or whether the
difference will not affect its performance in the new environment. From this analysis, develop a
plan to transfer the technology, or to decide the technology cannot be reused in the new
environment.

4.2 Evaluating the Domain Model

The objective of experience domain analysis is to learn how one environment might affect the
successful use of a technology by comparing the environment to another environment that already
uses the technology. As an aid to describing this process, we outline the application of the steps
from the previous section to describe the applicability of moving one technology (i.e., the new
technology) from a source environment to a target environment1.

In particular, we apply the previously described process with the following steps:

1. Identify the new technology that is to be reused in the target environment [Step 1].

2. Identify characteristics of the source environment that had an effect on the use of the
new technology (i.e., the domain characteristics). For the source environment, both the
domain factors and the values of those factors must be determined [Step 2.1 and Step
2.2].

3. Formalize the set of domain factors into a domain model [Step 2.3].

4. Determine the values of those domain factors in the target environment [Step 2.4 and
Step 3].

5. Compare the values of the domain factors for the target environment to those for the

1 This example is based upon moving the GQM technology from the NASA/GSFC Software Engineering
Laboratory to the Rapid Development Laboratory at NASA/JSC.

15

source environment and identify the domain factors with different values in the two
environments [Step 4]. For each domain factor that represents a difference between
the target environment and the source environment, determine whether

• the new technology could be modified to accommodate the difference, or

• the way that the new technology is transferred to the target environment could
be modified to accommodate the difference, or

• the difference cannot be accommodated and will prevent the successful use of
the new technology in the target environment.

6. Develop a transfer plan for the new technology itself according to the analysis in step
5.

Of course, it is hoped that step 6 does not identify any differences in domain factor values that
will prevent the successful transfer of the new technology. Each of the above steps is further
elaborated in the following sections.

4.2.1 Identify the New Technology

The first phase is to identify the technology that is to be reused. In this example, the NASA/GSFC
Software Engineering Laboratory (SEL) (the source environment) was to work with the
NASA/JSC Rapid Development Laboratory (RDL) (the target environment). The RDL was
embarking on a metrics program for its projects. The SEL has been collecting measurement data
for over twenty years, and has been using the GQM method successfully for over ten years as a
way to organize concepts on what data needs to be collected. The GQM paradigm has been
adopted by many organizations worldwide. Thus, this seemed like a reasonable candidate
technology that the RDL could use in its measurement program. From experiences in the SEL,
GQM should be transferable to other NASA centers. The decision was made early that this
technology (the new technology) would be the candidate technology to try.

4.2.2 Collecting Domain Factors

Applying the previously given model, one first gathers qualitative data on possible domain factors
affecting the new technology use in the source environment. This data can be collected by way of
open-ended interviews with a number of people who have used the new technology extensively in
the source environment both to help design studies and to help manage projects. Interviews may
be held singularly or in group settings. They can also be conducted via email or as surveys. The
interviews center on the following open-ended questions:

• Has the use of the new technology in the source environment been successful? In
what ways?

• What characteristics of the source environment have facilitated the successful use of
the new technology?

16

• Can you think of anything about the source environment that, if it were not true, might
have made it difficult or impossible to apply the new technology?

 From the interview notes, a preliminary set of domain factors is identified. This preliminary set is
then presented to a subset of the original interviewees, who provide comments and optionally add
new factors.

 In this example, interviews were the major source of data on domain factors. However, other
information can also be accessed. Given an historical database, the costs, reliability, and size of
projects built using the new technology can be compared to projects that did not use the new
technology. In this example, this was not done. Although the source environment had extensive
data for many of these domain factors, since the target environment was only beginning a
measurement program, these factors could not be applied to the target environment, as the
evaluation process requires.

 For our example process, the following domain factors were included in the final set:

 Personnel turnover. Low turnover of managers and experienced analysts was cited as
important to the successful use of the new technology. That is, the high-level people who
drive the use of the method have been the same, more or less, over time. Also, low
turnover at the developer level is also helpful, because it lessens the need for constant
training in the method.

 Skills of the manager. It had been important that the managers of the source
environment had been people who were both committed to evolutionary improvement and
who knew the higher levels of the organization. They could use this knowledge to get
support for continued use of technologies such as the new technology. At the same time,
the source environment had not undergone tremendous amounts of scrutiny from higher
levels of management. That is, the leaders of the source environment knew how to
manipulate higher management to get what they needed without drawing unwanted
attention.

 Role of the manager. It was important that the manager of the source environment was
also involved in project management.

 Application domain homogeneity. It had been helpful for the source environment that its
projects had consistently been in a very homogeneous application domain (ground support
software for unmanned satellites).

 Outside researchers. The role of the local university (University of Maryland, College
Park) in the source environment had been an advantage because it provided an outsider’s
view to projects. It lent a measure of outside credibility to the source environment’s work,
and in some cases it provided a source of inexpensive labor.

 Attitudes toward measurement. There should be a belief that measurement is important

17

amongst the project management and one level of management above that. It also helps if
the managers already have some experience with measurement. They must also have a
specific focus, goal, or need that they want to address through measurement, other than
just to collect data.

 Feedback. There must be feedback on the data collected to both developers and
managers.

 Trust. There must be trust between developers and managers that the data will not be
used in nefarious ways.

 Funding. There must be adequate funding to support the new technology use, including
the building of measurement infrastructure and the useful analysis of measurement data,
which includes formulating and testing hypotheses. Further, the nature of the projects
should ensure that adequate funding continues into the future.

 4.2.3 Determining Domain Values in the Target Environment

 The questions in the Operational Domain Model are sent to the management of the target
environment, and the responses are gathered (e.g., telephone call, email, video conference, field
trip). The responses are recorded qualitatively, then coded into the defined possible values for
each variable in the Operational Domain Model. Once each variable has a value, the
Operationalization domains are applied to get the values of the domain factors as they applied to
the target environment. The values of the operational variables, as well as the resulting domain
factor values for both the target environment and the source environment, are shown in Table 4-1.

 4.2.4 Analysis of the Two Domain Models

 As can be seen from Table 4-1, there are four domain factors that have different values in the two
environments: application domain, outside researchers, feedback, and funding. These are the areas
that need to be given special consideration when planning the transfer of one technology (i.e., the
GQM technology in this case) from the source to the target environment.

 Operational Variables Values for
 Target

Environment

 Domain
 Factors

 Values for
 Target

Environment

 Values for
 Source

Environment
 Advocate turnover low

 High-level turnover low Personnel turnover low low
 Low-level turnover low

 Ability to gain support high Skills of the manager high high
 Scrutiny low

 Role of the manager yes Role of the manager yes yes

18

 Application domain
homogeneity

 medium Application domain
homogeneity

 medium high

 Outside researchers funded Outside researchers funded involved
 Managers high Attitudes toward

 Senior managers medium measurement high high
 Goals yes

 Manager feedback sometimes Feedback medium high
 Developer feedback sometimes

 Evaluation no

 Developer trust yes Trust high high
 Uncollected data no

 Present no Funding unsure secure
 Future no

 Table 4-1. Values of Operational Variables and Domain Factors 2

 The source environment historically had dealt with development projects within the same
application domain: ground support software for unmanned spacecraft. In addition, most of the
projects had been complete development projects, including the entire development cycle from
requirements through all phases of testing. The projects had been fairly homogeneous in this
respect. Source environment personnel interviewed in the domain modeling process said that this
characteristic aided the use of the new technology because the results of that new technology
could often be reused between projects with little modification. In the target environment, on the
other hand, projects have mostly been within the same general application domain (i.e., guidance,
navigation, control of manned spacecraft), but have taken on different types of work (i.e. analysis,
development, testing). They were not, for the most part, complete development projects.

 In this initial phase, the transfer of the new technology was not greatly affected by this domain
difference because the experience domain analysis study concentrated on only one project. In
other words, the study team was concerned primarily with introducing the new technology
concepts on one particular project rather than spreading the use of that technology to all new
projects. However, in later phases of this technology transfer effort, this could become a concern.
One possible way to address the heterogeneity of the target environment’s projects is to use
higher-level, more abstract, experience domain analysis goals and questions that each project can
tailor to their own needs and use to choose appropriate metrics.

 Another domain factor that differed was the availability and role of outside researchers. Faculty
and students from the University of Maryland have played an active role in measurement,

 2 Bold italicized items represent domain factors that differed between the source and target environments.

19

including the development and use of the new technology, at the source environment. The role of
these academics in the source environment had been an advantage because it provided an
outsider’s view of projects. It lent a measure of outside credibility to the source environment’s
work, and it often provided expertise and personnel for measurement planning and analysis, thus
allowing NASA personnel to focus on meeting project requirements. The target environment had
no such collaborative contacts, and no academics or other outside researchers were involved in its
work, although their division funded some academic research. However, the experience domain
analysis study team filled this role for the target environment’s work with the new technology.
The study team served as an outside source of information and guidance, and also provided much
of the effort needed to do the analysis on the new technology.

 Measurement process feedback to both developers and managers is essential to the successful use
of the new technology. The feedback is important for two reasons. First, it helps developers and
maintainers see the benefits of the measurement process, securing their support for measurement.
Second, it helps to ensure that the data being gathered is relevant to those it is meant to help.
Developers and managers who come to rely on measurement data will speak up when it is no
longer meeting their needs. In the target environment, feedback was not always provided to
developers and managers. To overcome this difference, the study team viewed feedback as part of
the new technology approach, rather than a necessary condition for its use. In other words, the
importance of, and mechanisms for, providing feedback are packaged as part of the technology
being transferred. For instance, analyses and reports that provide such feedback were included in
the recommendations that resulted from the initial new technology analysis.

 The last difference between the two domains was the security of funding. The source environment
personnel that were interviewed acknowledged that a measurement program (including the use of
GQM) required resources, and the funding needed to be secure to allow GQM analyses to be
thorough and complete. Funding was not so secure within the target environment and was
dependent on projects being assigned to them with enough resources to support measurement
planning. In this initial phase, this difference was mitigated by the fact that the study team
provided the resources for much of the work required. However, this could become a major
factor in the long-term success of the new technology at the new location.3

 3 In fact, the lack of funding in the target environment indeed turned out to be a problem in the continued transfer
of this technology from the source environment to the target environment.

20

 Chapter 5. Conclusion

 As indicated in the introduction, if domains can be identified, then there is a possibility for
experience sharing and mutual collaboration for refining processes and evaluating new
technologies. This organization is referred to as the Experience Factory [Basili1994]. The role of
experience domain analysis in the context of the experience factory can be summarized as follows:

• Experience domain analysis allows the Experience Factory to identify the limitations of
reusing or sharing process information (e.g., process evaluation, tool evaluation); in
other words, the domain of validity of process-related information.

• Experience domain analysis allows the Experience Factory to determine if different
projects are comparable with respect to quality evaluation criteria (e.g., two projects
belong to two different domains characterized by a very different level of requirement
stability).

• Experience domain analysis allows the Experience Factory to determine if data can be
pooled together to build better quantitative models of software development.

21

 Appendix A. GQM Domain Model

 The model presented in this document describes the various factors that have affected the
successful use of GQM at the SEL. This data was gathered, through interviews, with several of
the SEL principals. The model is organized according to the formalism defined by Andreas Birk
of the Fraunhofer IESE for domain modeling for software technologies.

 The model has four parts. The first part is a header, which contains some identification
information about the model. The second part, the intuitive domain model, lists a set of domain
factors, which are attributes of the SEL environment that have impacted the use of GQM. In the
intuitive domain model, each domain factor is given an intuitive, conceptual definition and a set of
possible values. The third part, the operationalization, defines how the domain factors defined
intuitively map to concrete values that can be measured. The fourth and final part, the operational
domain model, defines the actual data that must be collected from an organization in order to
perform a domain comparison with this model.

 1 Header

 Technology: Goal/Question/Metric method
 Task: Design of a software measurement program
 Goal: Appropriateness and efficiency of metrics set
 Viewpoint: Project manager/planner
 Environment: Software Engineering Laboratory at NASA/GSFC

 2 Intuitive Domain Model

 Actual values for each domain factor are in bold.

 Domain factor: Personnel turnover
 Definition: The rate at which personnel are added to, and leave, the

organization
 Possible values: high, medium, low

 Domain factor: Skills of the manager
 Definition: The ability of the manager to obtain needed support and

resources from upper management without drawing
unwanted scrutiny and attention

 Possible values: high, medium, low

 Domain factor: Role of the manager

22

 Definition: Indicates whether or not the manager of the organization
has a role in project management

 Possible values: yes, no

 Domain factor: Application domain homogeneity
 Definition: The degree to which the different projects in the

organization are similar in terms of application domain
 Possible values: high, medium, low

 Domain factor: Outside researchers
 Definition: The degree to which outside researchers (e.g., academics)

are involved in any way in the organization
 Possible values: none, funded, involved

 Domain factor: Attitudes toward measurement
 Definition: The degree to which the management of the organization

believe in and understand the importance of measurement
 Possible values: high, medium, low

 Domain factor: Feedback
 Definition: The degree to which data is fed back to developers and

managers
 Possible values: high, medium, low

 Domain factor: Trust
 Definition: The amount of trust between developers and managers that

the data will not be used in nefarious ways
 Possible values: high, medium, low

 Domain factor: Funding
 Definition: The adequacy of present and future funding to support use

of the new technology
 Possible values: secure, unsure

 3 Operationalization

 Domain factor: Personnel turnover
 Operationalization: Functional
 Based on: advocate turnover, high-level turnover, low-level turnover
 Model: if advocate turnover is high then
 personnel turnover is high
 else
 if high-level turnover is high then

23

 personnel turnover is medium
 else
 if low-level turnover is high then
 personnel turnover is medium
 else
 personnel turnover is low

 Rationale: If the advocates of measurement in the organization tend

not to be around very much (i.e., advocate turnover is high),
then this has a big effect on the success of the
measurement program, so the effect of personnel turnover is
said to be high. If the advocates stick around, but there is a
great deal of turnover at the management (i.e., high-level
turnover) and developer (i.e., low-level turnover) levels, then
personnel turnover has a medium effect on success. Finally,
if all types of turnover are low, then the impact of personnel
turnover is low.

 Domain factor: Skills of the manager
 Operationalization: Functional
 Based on: ability to gain support, scrutiny
 Model:

 Ability to gain support

→
 Scrutiny

 ↓

 high

 medium

 low

 low high medium low
 medium high medium low

 high medium low low

 Rationale: The amount of unwanted scrutiny that the organization

suffers is not really significant unless it is high. Otherwise,
the skills of the manager factor is determined by the
manager’s ability to gain support from upper levels.

 Domain factor: Role of the manager
 Operationalization: Direct

 Domain factor: Application domain homogeneity
 Operationalization: Direct

 Domain factor: Outside researchers

24

 Operationalization: Direct

 Domain factor: Attitude toward measurement
 Operationalization: Functional
 Based on: managers, senior managers, goals
 Model: if goals is no then
 attitude toward measurement is low
 else

 managers →

 senior managers
 ↓

 high

 medium

 low

 high high medium medium
 medium high medium low

 low medium medium low

 Rationale: If there are no specific measurement goals (i.e., goals is no),

then this indicates that management really does not
understand the importance of measurement, and thus the
attitude toward measurement factor is rated low, no matter
what the managers’ attitudes are. Otherwise, both sets of
managers’ and senior managers’ attitudes are important
because first-line managers must provide the motivation,
while senior managers provide the resources. However,
some measurement can be done without the senior
managers’ support, so the managers’ attitude is weighted
slightly higher.

 Domain factor: Feedback
 Operationalization: Functional
 Based on: manager feedback, developer feedback
 Model:

 manager feedback →
 developer feedback

 ↓

 always

 sometimes

 never

 always high medium medium
 sometimes medium medium medium

 never medium medium low

 Rationale: If both manager feedback and developer feedback from

measurement occurs on a regular basis, then feedback is

25

rated high. Similarly, if neither group ever gets feedback,
then feedback is low. Any other combination is medium.

 Domain factor: Trust
 Operationalization: Functional
 Based on: evaluation, developer trust, uncollected data
 Model: if (evaluation is no) and (developer trust is yes) and
 (uncollected data is no) then
 trust is high
 else
 if (evaluation is yes) and (developer trust is no) and
 (uncollected data is yes) then
 trust is low
 else
 trust is medium
 Rationale: If data is not used to evaluate developers (evaluation is no)

and the developers believe that (developer trust is yes) and
lack of trust has never affected decisions about data
collection (uncollected data is no), then trust is rated high. If
exactly the opposite of that is true, then trust is low.
Anything in between is rated medium.

 Domain factor: Funding
 Operationalization: Functional
 Based on: present, future
 Model: if (present is yes) and (future is yes) then
 funding is secure
 else
 funding is unsure
 Rationale: Funding is considered secure only if it is currently adequate

to support measurement and it is reasonably likely to
continue to be adequate.

 4 Operational Domain Model

 Domain factor: Personnel turnover
 Operationalization: Functional
 Instruments: Interview questions:

• high-level turnover
 How high is turnover in the leadership of the organization
and their managers? (high/low)

• low-level turnover
 How high is turnover among developers and analysts in

26

the organization? (high/low)
• advocate turnover

 Who are the people who would be important in applying
GQM in the future and what is the likelihood that they will
turn over in the near future? (high/low)

 Domain factor: Skills of the manager
 Operationalization: Functional
 Instruments: Interview questions:

• ability to gain support
 Is the leadership knowledgeable about his/her superior
levels of management and skillful in working those levels
to gain support for the organization? (high/medium/low)

• scrutiny
 What level of scrutiny does the organization get from
upper levels of management? (high/medium/low)

 Domain factor: Role of the manager
 Operationalization: Direct
 Instruments: Interview questions:

• role of the manager
Is the manager involved in project management?
(yes/no)

 Domain factor: Application domain homogeneity
 Operationalization: Direct
 Instruments: Interview questions:

• application domain homogeneity
How homogeneous is the application domain of projects
within the organization? (high/medium/low)

 Domain factor: Outside researchers
 Operationalization: Direct
 Instruments: Interview questions:

• outside researchers
Are there opportunities for university collaboration in the
organization? Are there other independent research
organizations with which the organization could
collaborate? To what extent could the organization itself
be considered an independent research organization?
(none, funded, involved)

 Domain factor: Attitudes toward measurement
 Operationalization: Functional

27

 Instruments: Interview questions:
• managers

 Do the managers of the organization believe that
measurement is important? (high/medium/low)

• senior managers
 Does the level of management above the organization
believe that measurement is important?
(high/medium/low)

• goals
 Are there specific goals or needs to be addressed
through measurement? (yes/no)

 Domain factor: Feedback
 Operationalization: Functional
 Instruments: Interview questions:

• manager feedback
 Do managers currently get feedback on the results of
data collection and analysis on a regular basis?
(always/sometimes/never)

• developer feedback
 Do developers currently get feedback on the results of
data collection and analysis on a regular basis?
(always/sometimes/never)

 Domain factor: Trust
 Operationalization: Functional
 Instruments: Interview questions:

• evaluation
 Does the management have any plans or desire to use
the collected data to evaluate individual developers?
(yes/no)

• developer trust
 Do the developers trust that the data will not be used to
evaluate them personally or in any other way that might
cause them harm? (yes/no)

• uncollected data
 Is there otherwise useful data that is not collected mainly
because of staff concern that it will be misused? (yes/no)

 Domain factor: Funding
 Operationalization: Functional
 Instruments: Interview questions:

• present
 Do current project budgets, in general, include resources

28

for developing, maintaining, and using a measurement
program? (yes/no)

• future
How do the projects fit into the larger organization’s
mission? Do they provide revenue or other concrete
benefits to the larger organization? Are they perceived to
be critical projects? Can it be expected that future project
budgets, in general, will include resources for
developing, maintaining, and using a measurement
program? (yes/no)

29

Abbreviations and Acronyms

GQM Goal/Question/Metric

GSFC Goddard Space Flight Center

IBM International Business Machines

ISC Information Systems Center

JSC Johnson Space Center

NASA National Aeronautics and Space Administration

OSMA Office of Safety and Mission Assurance

RDL Rapid Development Laboratory

SEL Software Engineering Laboratory

30

References

[Basili1994] Basili V., et al, The Experience Factory, Encyclopedia of Software Engineering,
Wiley & Sons, Inc., 1994.

[Birk1997] Birk, A., "Modeling the Application Domains of Software Engineering Technologies”,
IESE-Report No. 014.97/E, August 1997.

